Function Identities
Trigonometric function
- $\sin(2A) = 2\sin(A)\cos(A) = \frac{2\tan(A)}{1 + \tan^{2}(A)}$
- $\cos(2A) = \cos^{2}(A) - \sin^{2}(A) = \frac{1 - \tan^{2}(A)}{1 + \tan^{2}(A)}$
- $\tan(2A) = \frac{2\tan(A)}{1 - \tan^{2}(A)}$
- $\sin(3A) = 3\sin(A) - 4\sin^{3}(A)$
- $\cos(3A) = 4\cos^{3}(A) - 3\cos(A)$
- $\tan(3A) = \frac{3\tan(A) - \tan^{3}(A)}{1 - 3\tan^{2}(A)}$
Hyperbolic function
- $\sinh(x) = \frac{e^{x} - e^{-x}}{2}$
- $\cosh(x) = \frac{e^{x} + e^{-x}}{2}$
- $\cosh^{2}(x) - \sinh^{2}(x) = 1$
- $\cosh^{2}(x) + \sinh^{2}(x) = \cosh(2x)$
- $\text{sech}^{2}(x) + \tanh^{2}(x) = 1 $
- $\sinh(-x) = - \sinh(x)$
- $\cosh(-x) = \cosh(x)$
- $\sinh(2x) = 2\sinh(x)\cosh(x)$
- $\sinh(x + y) = \sinh(x).\cosh(y) + \cosh(x).\sinh(y)$
- $\cosh(x + y) = \cosh(x).\cosh(y) + \sinh(x).\sinh(y)$
Exponential function
- $i = e^{i\frac{\pi}{2}}$
- $a^{x} = e^{x\ln(a)}$
Permalink at https://www.physicslog.com/math-notes/function-identities
Published on May 30, 2021
Last revised on Nov 2, 2023